Solve the following equations for $x$ and $y$. \[\begin{aligned} x+y&=20\\ x-y&=10 \end{aligned}\]


What are simultaneous linear equations, and what are they for?
They are pairs (initially, eventually you can have lots and lots of them!) of equations which apply to the same data. This is the beginning of mathematics starting to be really useful in that real world
that so many of our students like to ask us about.
In this introduction, I am going to talk about how they work, what they do for us and what they mean, which all contend for the things that confuse maths students: first prize.
Let's start with a simple puzzle. It is much simpler to make sense of things, if you have a sense of the need for them before we start.
In a cafe, 3 cups of tea and a bun cost £1.60 and 2 cups of tea and a bun costs £1.25. What is the cost of a cup of tea and what is the cost of a bun?
Let's begin by reading the problem and then we'll see how to translate the problem into mathematics.
- Let $1$ cup of tea cost $t$ pence and
- Let $1$ bun costs £$b$.
- So 3 cups of tea and a bun will cost £$3t+b$.
- And 2 cups of tea and a bun will cost £$2t+b$.
- Now, because we know what these combinations cost, we can state our sentences in maths as follows: \[\begin{align} 3t+b&=1.6\\ 2t+b&=1.25 \end{align}\]
- We can see our problem restated as a pair of simultaneous linear equations, which, once we learn to solve them, will enable us to find out the cost of the single cup of tea and also the cost of the bun.
- The solution to this problem is that $t=0.35$ and $b=0.55$. If you substitute those values into the equations, you should see that they come out right.
- $3(35)+55=1.6$
- $2(35)+b=1.25$
Solving the equations is beyond the scope of this introduction, but this is what we will be looking at in this topic section.
In mathematics, in order to solve an equation with one unknown, we need only one equation. If, as in the example above we have $2$ variables, we need $2$ equations. If you have $3$ variables, you need $3$ equations and so on...
A useful aspect of working with two equations in 2 unknowns is that we can graph them. I have used the $x$ axis to show the cost of a cup of tea and the $y$ axis to show the cost of a bun. When we draw the lines on the graph, we can see that there is only one point on the graphs where both lines match up and that is the solution we are after. The point is marked on the graph and shows that $t=0.35$ and $b=0.55$.
Worked example 1: Solving simultaneous equations #1 (Gauss: no balancing required)
- Notes
Look carefully at the equations we have here. Firstly, they are very similar. Both equations have a single $x$ with the same signs(positive) and both equations have a single $y$ but with opposite signs. We can use either of these facts to solve this set of equations.
I am going to show how both approaches with give the right answer, but that the first is almost always the best one to use. Hopefully you will be able to see why as we proceed.
Method 1 (not the best way)
\[\begin{aligned} x+y&=20 \ \ \ \ (1)\\ x-y&=10 \ \ \ \ (2)\\ \hline 0+2y&=10 \ \ \ \ (1)-(2)\\ y&=5 \\ \hline \end{aligned} \] \[ \begin{aligned} x+y&=20 \ becomes \\ x+5&=20 \\ x&=15\\ \hline \\ &Solution: \\ &x=15, \ y=5 \end{aligned} \\[265px] \]Method 2 (the much better way)
\[\begin{aligned} x+y&=20 \ \ \ \ (1)\\ x-y&=10 \ \ \ \ (2)\\ \hline 2x+0&=30 \ \ \ \ (1)+(2)\\ x&=15 \\ \hline \end{aligned} \] \[ \begin{aligned} x+y&=20 \ becomes \\ 15+y&=20 \\ y&=5\\ \hline \\ &Solution: \\ &x=15, \ y=5 \end{aligned}\]Gaussian elimination
Method 1
- Write down the equations, one below the other, label them $(1)$ and $(2)$ and draw a line under them.
- Subtract each part of the equations. $x-x=0$, $y --y=2y$ and $20-10=10$. The $y--y$ section is the reason why this method is not so great. Subtracting a negative is the same as adding a positive. However, this is very easy to make mistakes with.
- We now know one of the values ($y=5$) and we will use substitution to find the other value. We will substitute the value into equation $(1)$, though we could use either of them. The reason I use equation $(1)$ is that it has fewer minus signs and minus signs are the biggest cause of errors in mathematics.
Method 2
- Write down the equations as before.
- Notice that if we add $+y$ to $-y$ we get $0$. And adding is much easier than subtracting, particularly subtracting negatives.
- Other than that, it works the same way as before.
Note: It is almost always better to add than subtract, if possible.
- \[x=15, \ y=5\]
Worked example 2: Solving simultaneous equations #2 (Substitution method)
- Notes
- Solve the following simultaneous equations by substitution. \[\begin{align} x + y &= 18\\ y &= 2x \end{align}\]
- \[\begin{align} x + y &= 18\\ y &= 2x\\ \hline \end{align} \] \[\begin{align} x+ y &= 18\\ x + 2x &= 18\\ 3x&=18\\ x&=6\\ \hline \\ y&=2x\\ y&=2(6)\\ y&=12\\ \hline \end{align}\]
Substitution method
- The 2nd equation $y=2x$, gives one variable in terms of the other. This means that we can substitute this into the 1st equation, leaving us with a single variable ($x$).
- Solve the equation for $x$.
- Substitute into equation (2) to get the value for $y$.
- \[ \begin{align}x&=6\\ y&=12 \end{align} \]
Worked example 3: Solving simultaneous equations #3 (Substitution method)
- Notes
- Solve the following equations: \[\begin{align} x + 2y &= 11\\ y &= x - 2 \end{align}\]
- \[\begin{aligned} x + 2y &= 11 \ \ \ \ \ \ \ \ \ \ (1)\\ y &= x - 2 \ \ \ \ \ (2)\\ \hline \\ x+2(x-2)&=11\\ x+2x-4&=11\\ 3x-4&=11\\ 3x&=15\\ x&=5\\ \hline \\ y=x-2\\ y=5-2=3 \end{aligned}\]
- Substitute equation $(2)$ into equation $(1)$. This is to replace the $y$ in the first equation by the expression $x-2$.
- Note that in this situation, we must use brackets when we do the substitution.
- Expand the brackets and solve for $x$.
- Finally, substitute again into equation $(2)$ to find the value of $y$.
- \[\begin{aligned} x&=5\\ y&=3 \end{aligned}\]
Worked example 4: Simultaneous equations (Gauss: balance one equation)
- Notes
Solve this set of simultaneous equations
\[\begin{aligned} 3x+2y&=18\\ 2x-y&=5 \end{aligned}\]You should notice immediately that this example presents us with a new difficulty: there are $3x$s and $2x$s in the two equations, respectively. Likewise there are $+2y$ in the first and $-y$ in the second. This means that in the current form, we cannot proceed.
Fortunately, we have a way out of this problem. Remember the Golden Rule of Equations? We can do almost anything to an equation, so long as we do the same thing to both sides. Now if we were to multiply the second equation by $2$, then our equations can be solved.
- \[\begin{aligned} 3x+2y&=18 \ \ \ \ \ (1)\\ 2x-y&=5 \ \ \ \ \ \ \ (2)\\ \hline\\ 3x+2y&=18 \ \ \ \ \ (1)\\ 4x-2y&=10 \ \ \ \ \ (3) = (2) \times 2 \\ \hline 7x+0&=28 \ \ \ \ \ (1) + (3) \\ x&=4\\ \hline 3(4)+2y&=18 \\ 12+2y&=18 \\ 2y&=6\\ y&=3 \end{aligned}\]
- Write down the equations.
- Multiply eqn $(2) \times 2$ to make eqn $(3)$
- Add eqns $(1)$ and $(3)$
- Solve for $x$
- Substitute to find the value of $y$.
- \[\begin{aligned} x&=4\\ y&=3 \end{aligned}\]
Worked example 5: Simultaneous equations (Gauss: balance both equations)
- Notes
Solve the following simultaneous equations:
\[\begin{aligned} 4x+3y&=27\\ 5x-2y&=5 \end{aligned}\]- \[\begin{aligned} 4x+3y&=27 \ \ \ \ \ \ (1) \\ 5x-2y&=5 \ \ \ \ \ \ \ \ (2) \\ \hline\\ 8x+6y&=54 \ \ \ \ \ \ (3) = (1) \times 2\\ 15x-6y&=15 \ \ \ \ \ \ (4)=(2) \times 3 \\ \hline 23x&=69 \ \ \ \ \ \ (3)+(4)\\ x&=3\\ \hline 4x+3y&=27\\ 4(3)+3y&=27\\ 3y&=15\\ y&=5\\ \hline \end{aligned}\]
- This time there is no simple way to turn a $4$ to a $5$ or a $3$ to a $2$.
- This means that we must balance both of the equations.
- We will balance the $y$s by multiplying eqn $(1)$ by $2$ and eqn $(2)$ by $3$.
- Add equations $3$ and $4$.
- Substitute $x=3$ into eqn $(1)$ and solve to find the value of $y$
- The labeling of the equations and making clear whether you are adding or subtracting, is essential, if you are to avoid making endless errors with this technique. You have been warned!
- \[\begin{aligned} x&=3\\ y&=5 \end{aligned}\]
Exercise 1: Solving simultaneous equations (Gaussian elimination)
- Instructions:Solve the following pairs of simultaneous equations using Gaussian elimination.
- Q1\[\begin{aligned} g+h&=5\\ g-h&=1 \end{aligned}\]\[\begin{aligned} g=3\\ h=2 \end{aligned}\]
- Q2\[\begin{aligned} a+b&=13\\ a-b&=3 \end{aligned}\]\[\begin{aligned} a&=8\\ b&=5 \end{aligned}\]
- Q3\[\begin{aligned} d+e&=15\\ d-e&=5 \end{aligned}\]\[\begin{aligned} d&=10\\ e&=5 \end{aligned}\]
- Q4\[\begin{aligned} p+q&=17\\ p-q&=1 \end{aligned}\]\[\begin{aligned} p&=9\\ q&=8 \end{aligned}\]
- Q5\[\begin{aligned} 2i+j&=16\\ i-j&=5 \end{aligned}\]\[\begin{aligned} i&=7\\ j&=2 \end{aligned}\]
- Q6\[\begin{aligned} 3b-c&=10\\ b+c&=6 \end{aligned}\]\[\begin{aligned} b&=4\\ c&=2 \end{aligned}\]
- Q7\[\begin{aligned} 4v+w&=7\\ 2v-w&=-1 \end{aligned}\]\[\begin{aligned} v&=1\\ w&=3 \end{aligned}\]
- Q8\[\begin{aligned} a+2r&=6\\ 3q-2r&=-14 \end{aligned}\]\[\begin{aligned} q&=-2\\ r&=4 \end{aligned}\]
- Q9\[\begin{aligned} 2j+3k&=13\\ j-3k&=2 \end{aligned}\]\[\begin{aligned} j&=5\\ k&=1 \end{aligned}\]
- Q10\[\begin{aligned} 5c-2d&=9\\ 3c+2d&=-1 \end{aligned}\]\[\begin{aligned} c&=1\\ d&=-2 \end{aligned}\]
- Q11\[\begin{aligned} 7k+3m&=16\\ 2k-3m&=-7 \end{aligned}\]\[\begin{aligned} k&=1\\ m&=3 \end{aligned}\]
- Q12\[\begin{aligned} 6s-5t&=27\\ 2s+5t&=-11 \end{aligned}\]\[\begin{aligned} s&=2\\ t&=-3 \end{aligned}\]
- Q13\[\begin{aligned} x+3y&=3\\ x+y&=2 \end{aligned}\]\[\begin{aligned} x&=1\\ y&=1 \end{aligned}\]
- Q14\[\begin{aligned} m+4n&=12\\ 2m+4n&=16 \end{aligned}\]\[\begin{aligned} m&=4\\ n&=2 \end{aligned}\]
- Q15\[\begin{aligned} d+3e&=-7\\ 2d+3e&=-5 \end{aligned}\]\[\begin{aligned} d&=2\\ e&=-3 \end{aligned}\]
- Q16\[\begin{aligned} 4t+u&=3\\ 3t+u&=2 \end{aligned}\]\[\begin{aligned} t&=1\\ n&=-1 \end{aligned}\]
- Q17\[\begin{aligned} 5e+3f&=11\\ 4e+3f&=7 \end{aligned}\]\[\begin{aligned} e&=4\\ f&=-3 \end{aligned}\]
- Q18\[\begin{aligned} 7n+3p&=45\\ 7n+p&=29 \end{aligned}\]\[\begin{aligned} p&=8\\ n&=3 \end{aligned}\]
- Q19\[\begin{aligned} 3y-4z&=18\\ y-4z&=11 \end{aligned}\]\[\begin{aligned} y&=3\\ z&=-2 \end{aligned}\]
- Q20\[\begin{aligned} 5u-6v&=33\\ u-6v&=21 \end{aligned}\]\[\begin{aligned} u&=3\\ v&=-3 \end{aligned}\]
- Q21\[\begin{aligned} 6f-5g&=16\\ 6f-3g&=12 \end{aligned}\]\[\begin{aligned} g&=-2\\ f&=1 \end{aligned}\]
- Q22\[\begin{aligned} 2p-3q&=0\\ 2p-q&=4 \end{aligned}\]\[\begin{aligned} p&=3\\ q&=2 \end{aligned}\]
- Q23\[\begin{aligned} 6f-5g&=62\\ 2f-5g&=34 \end{aligned}\]\[\begin{aligned} f&=7\\ g&=-4 \end{aligned}\]
- Q24\[\begin{aligned} 4v-3w&=11\\ 4v-5w&=5 \end{aligned}\]\[\begin{aligned} v&=5\\ w&=3 \end{aligned}\]
Exercise 2: Solving simultaneous equations (Substitution)
- Instructions:Solve the following pairs of simultaneous equations using substitution.
- Q1\[\begin{aligned} f+g&=3\\ g&=2f \end{aligned}\]\[\begin{aligned} f&=1\\ g&=2 \end{aligned}\]
- Q2\[\begin{aligned} k-m&=2\\ k&=3m \end{aligned}\]\[\begin{aligned} k&=3\\ m&=1 \end{aligned}\]
- Q3\[\begin{aligned} 2a+b&=8\\ b&=2a \end{aligned}\]\[\begin{aligned} a&=2\\ b&=4 \end{aligned}\]
- Q4\[\begin{aligned} s+2t&=20\\ t&=2s \end{aligned}\]\[\begin{aligned} s&=4\\ t&=8 \end{aligned}\]
- Q5\[\begin{aligned} g+3h&=20\\ h&=3g \end{aligned}\]\[\begin{aligned} g&=2\\ h&=6 \end{aligned}\]
- Q6\[\begin{aligned} 2m-n&=14\\ m&=4n \end{aligned}\]\[\begin{aligned} m&=8\\ n&=2 \end{aligned}\]
- Q7\[\begin{aligned} 2b+c&=15\\ c&=3b \end{aligned}\]\[\begin{aligned} b&=3\\ c&=9 \end{aligned}\]
- Q8\[\begin{aligned} 4t+3u&=20\\ u&=t+2 \end{aligned}\]\[\begin{aligned} t&=2\\ u&=4 \end{aligned}\]
- Q9\[\begin{aligned} 4y-x&=18\\ y&=2x+1 \end{aligned}\]\[\begin{aligned} x&=2\\ y&=5 \end{aligned}\]
- Q10\[\begin{aligned} 5n+3p&=41\\ p&=2n-1 \end{aligned}\]\[\begin{aligned} n&=4\\ p&=7 \end{aligned}\]
- Q11\[\begin{aligned} 2c-d&=14\\ c&=3d+2 \end{aligned}\]\[\begin{aligned} d&=2\\ c&=8 \end{aligned}\]
- Q12\[\begin{aligned} 3h+2i&=-20\\ i&=3h-1 \end{aligned}\]\[\begin{aligned} h&=-2\\ i&=-7 \end{aligned}\]
- Q13\[\begin{aligned} 5u-v&=-4\\ u&=2v+1 \end{aligned}\]\[\begin{aligned} u&=-1\\ v&=-1 \end{aligned}\]
- Q14\[\begin{aligned} 2y-3z&=-10\\ y&=3z-2 \end{aligned}\]\[\begin{aligned} z&=-2\\ p&=7 \end{aligned}\]
- Q15\[\begin{aligned} -p-2q&=5\\ p&=2q+3 \end{aligned}\]\[\begin{aligned} p&=-1\\ q&=-2 \end{aligned}\]
- Q16\[\begin{aligned} 6i-5j&=-37\\ j&=3-i \end{aligned}\]\[\begin{aligned} i&=-2\\ j&=5 \end{aligned}\]
- Q17\[\begin{aligned} 3v+4w&=-11\\ w&=-v-3 \end{aligned}\]\[\begin{aligned} v&=-1\\ w&=-2 \end{aligned}\]
- Q18\[\begin{aligned} 4d+10e&=-19\\ e&=-3d+2 \end{aligned}\]\[\begin{aligned} d&=1.5\\ e&=-2.5 \end{aligned}\]
- Q19\[\begin{aligned} 3q+6r&=-25\\ r&=-4q-3 \end{aligned}\]\[\begin{aligned} q&=\frac{1}{3}\\ r&=-\frac{13}{3} \end{aligned}\]
- Q20\[\begin{aligned} 6z-3a&=10\\ a&=3z-2 \end{aligned}\]\[\begin{aligned} z&=-\frac{4}{3}\\ a&=-6 \end{aligned}\]
- Q21\[\begin{aligned} 4j-5k&=19\\ k&=2j-3 \end{aligned}\]\[\begin{aligned} j&=-\frac{2}{3}\\ k&=-\frac{13]{3} \end{aligned}\]
- Q22\[\begin{aligned} 2w-5x&=21\\ w&=2x-3 \end{aligned}\]\[\begin{aligned} x&=-27\\ w&=-57 \end{aligned}\]
- Q23\[\begin{aligned} 3e+f&=17\\ a&=3z-2 \end{aligned}\]\[\begin{aligned} f&=0.5\\ e&=5.5 \end{aligned}\]
- Q24\[\begin{aligned} 12r-15s&=21\\ r&=4-2s \end{aligned}\]\[\begin{aligned} s&=\frac{9}{13}\\ r&=\frac{34}{13} \end{aligned}\]
Exercise 3: Balancing one equation
- Q1\[\begin{aligned} n+p&=2\\ 2n+3p&=5 \end{aligned}\]\[\begin{aligned} n&=1\\ p&=1 \end{aligned}\]
- Q2\[\begin{aligned} a-b&=-1\\ 3a+2b&=7 \end{aligned}\]\[\begin{aligned} a&=1\\ b&=2 \end{aligned}\]
- Q3\[\begin{aligned} 2e+f&=5\\ 3e-2f&=4 \end{aligned}\]\[\begin{aligned} e&=2\\ f&=1 \end{aligned}\]
- Q4\[\begin{aligned} 3c-d&=9\\ c+2d&=10 \end{aligned}\]\[\begin{aligned} c&=4\\ d&=3 \end{aligned}\]
- Q5\[\begin{aligned} 4q+r&=12\\ 3q+2r&=14 \end{aligned}\]\[\begin{aligned} q&=2\\ r&=4 \end{aligned}\]
- Q6\[\begin{aligned} g-3h&=-3\\ 2g+h&=8 \end{aligned}\]\[\begin{aligned} g&=3\\ h&=2 \end{aligned}\]
- Q7\[\begin{aligned} 2u-3v&=1\\ u+2v&=11 \end{aligned}\]\[\begin{aligned} u&=5\\ v&=3 \end{aligned}\]
- Q8\[\begin{aligned} 5c+3d&=5\\ 2c+d&=1 \end{aligned}\]\[\begin{aligned} c&=-2\\ d&=5 \end{aligned}\]
- Q9\[\begin{aligned} 4s-5t&=11\\ 2s+3t&=-11 \end{aligned}\]\[\begin{aligned} s&=-1\\ t&=-3 \end{aligned}\]
- Q10\[\begin{aligned} i-2j&=13\\ 3i+4j&=-1 \end{aligned}\]\[\begin{aligned} i&=5\\ j&=-4 \end{aligned}\]
- Q11\[\begin{aligned} 2e+5f&=1\\ 4e-f&=-9 \end{aligned}\]\[\begin{aligned} e&=-2\\ f&=1 \end{aligned}\]
- Q12\[\begin{aligned} 6k+5m&=9\\ 3k-2m&=18 \end{aligned}\]\[\begin{aligned} k&=4\\ m&=-3 \end{aligned}\]
- Q13\[\begin{aligned} 4u-5v&=-1\\ 2u+3v&=-17 \end{aligned}\]\[\begin{aligned} u&=-4\\ v&=-3 \end{aligned}\]
- Q14\[\begin{aligned} 3n-2p&=22\\ n-3p&=12 \end{aligned}\]\[\begin{aligned} n&=6\\ p&=-2 \end{aligned}\]
- Q15\[\begin{aligned} 5g-6h&=28\\ 4g+3h&=-1 \end{aligned}\]\[\begin{aligned} g&=2\\ h&=-3 \end{aligned}\]
- Q16\[\begin{aligned} 2q+7r&=15\\ q-3r&=-5.5 \end{aligned}\]\[\begin{aligned} q&=0.5\\ r&=2 \end{aligned}\]
- Q17\[\begin{aligned} 4w-7x&=-23\\ 2w+3x&=8 \end{aligned}\]\[\begin{aligned} w&=-0.5\\ x&=3 \end{aligned}\]
- Q18\[\begin{aligned} 3s+t&=0\\ 5s+3t&=2 \end{aligned}\]\[\begin{aligned} s&=-0.5\\ t&=1.5 \end{aligned}\]
- Q19\[\begin{aligned} 3i-4j&=38\\ 6i+5j&=50 \end{aligned}\]\[\begin{aligned} i&=10\\ j&=-2 \end{aligned}\]
- Q20\[\begin{aligned} 3y-2z&=23\\ 5y-6z&=57 \end{aligned}\]\[\begin{aligned} y&=3\\ z&=-7 \end{aligned}\]
- Q21\[\begin{aligned} 5w-3x&=2\\ 10w-x&=9 \end{aligned}\]\[\begin{aligned} w&=1\\ x&=1 \end{aligned}\]
- Q22\[\begin{aligned} 2y+5z&=52\\ 4y-z&=16 \end{aligned}\]\[\begin{aligned} y&=6\\ z&=8 \end{aligned}\]
- Q23\[\begin{aligned} 5m-2k&=45\\ 8k+m&=9 \end{aligned}\]\[\begin{aligned} m&=9\\ k&=0 \end{aligned}\]
- Q24\[\begin{aligned} -b+2a&=-11\\ 8a-3b&=-37 \end{aligned}\]\[\begin{aligned} a&=-2\\ y&=7 \end{aligned}\]
Exercise 4: Balancing both equations
- Q1\[\begin{aligned} 2h+3f&=5\\ 3h+2f&=5 \end{aligned}\]\[\begin{aligned} h&=1\\ f&=1 \end{aligned}\]
- Q2\[\begin{aligned} 2k-5a&=9\\ 3k-2a&=8 \end{aligned}\]\[\begin{aligned} a&=-1\\ k&=2 \end{aligned}\]
- Q3\[\begin{aligned} 3n-4s&=2\\ 2n+3s&=7 \end{aligned}\]\[\begin{aligned} n&=2\\ s&=1 \end{aligned}\]
- Q4\[\begin{aligned} 5t-2w&=12\\ 3t+5w&=1 \end{aligned}\]\[\begin{aligned} t&=2\\ w&=-1 \end{aligned}\]
- Q5\[\begin{aligned} 7i+2g&=-17\\ 4i-3g&=-18 \end{aligned}\]\[\begin{aligned} i&=-3\\ g&=2 \end{aligned}\]
- Q6\[\begin{aligned} 2b-5m&=19\\ 3b+4m&=-6 \end{aligned}\]\[\begin{aligned} b&=2\\ m&=-3 \end{aligned}\]
- Q7\[\begin{aligned} 4c-7h&=15\\ 3c-4h&=10 \end{aligned}\]\[\begin{aligned} c&=2\\ h&=-1 \end{aligned}\]
- Q8\[\begin{aligned} 2u+3a&=17\\ 3u+4n&=-19 \end{aligned}\]\[\begin{aligned} u&=4\\ a&=3 \end{aligned}\]
- Q9\[\begin{aligned} 7j-3t&=16\\ 6j+5t&=-9 \end{aligned}\]\[\begin{aligned} j&=1\\ t&=-3 \end{aligned}\]
- Q10\[\begin{aligned} 6p-5b&=19\\ 4p+7b&=23 \end{aligned}\]\[\begin{aligned} p&=4\\ b&=1 \end{aligned}\]
- Q11\[\begin{aligned} 5d-7n&=23\\ 3d+4n&=-19 \end{aligned}\]\[\begin{aligned} d&=-1\\ n&=-4 \end{aligned}\]
- Q12\[\begin{aligned} 4q+7n&=24\\ 3q+4n&=13 \end{aligned}\]\[\begin{aligned} q&=-1\\ n&=4 \end{aligned}\]
- Q13\[\begin{aligned} 6v-7p&=-4\\ -5v+8y&=-1 \end{aligned}\]\[\begin{aligned} p&=-2\\ v&=-3 \end{aligned}\]
- Q14\[\begin{aligned} 7k+6i&=23\\ 3k+4i&=7 \end{aligned}\]\[\begin{aligned} k&=5\\ i&=-2 \end{aligned}\]
- Q15\[\begin{aligned} -6r-7u&=-33\\ 9r+4u&=30 \end{aligned}\]\[\begin{aligned} r&=2\\ u&=3 \end{aligned}\]
- Q16\[\begin{aligned} 3e+2x=5&=\\ -4e-9x&=6 \end{aligned}\]\[\begin{aligned} e&=3\\ x&=-2 \end{aligned}\]
- Q17\[\begin{aligned} 3s+7c&=2\\ 5s+8c&=-4 \end{aligned}\]\[\begin{aligned} s&=-4\\ c&=2 \end{aligned}\]
- Q18\[\begin{aligned} -4m-4q&=0\\ 9m+5q&=16 \end{aligned}\]\[\begin{aligned} m&=4\\ q&=-4 \end{aligned}\]
- Q19\[\begin{aligned} 3x+2d&=5\\ 4x+9d&=-6 \end{aligned}\]\[\begin{aligned} x&=3\\ d&=-2 \end{aligned}\]
- Q20\[\begin{aligned} 3f+4v&=40\\ 4f-7v&=4 \end{aligned}\]\[\begin{aligned} f&=8\\ v&=4 \end{aligned}\]
- Q21\[\begin{aligned} 7y-5j&=4\\ 5y+3j&=-30 \end{aligned}\]\[\begin{aligned} y&=-3\\ j&=-5 \end{aligned}\]
- Q22\[\begin{aligned} 3z-8r&=1\\ 4z-9r&=3 \end{aligned}\]\[\begin{aligned} r&=1\\ z&=3 \end{aligned}\]
- Q23\[\begin{aligned} 10g+3e&=55\\ 8g+5e&=31 \end{aligned}\]\[\begin{aligned} g&=7\\ e&=-5 \end{aligned}\]
- Q24\[\begin{aligned} 9w-2y&=-41\\ 4w-7y&=-61 \end{aligned}\]\[\begin{aligned} w&=-3\\ y&=7 \end{aligned}\]